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In view of Griff's instruction to include work-in-progress and wild
speculations, rather than just polished results, | will talk about 4 counting
problems:

one we have solved (and are writing up);

one we are working on (we have a method but not yet an answer);

one we probably can’t solve in general;

one where we have a strategy that might work.
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The set-up: Hopf-Galois Structures

Let N/K be a finite Galois extension of fields, with ' = Gal(N/K).

A Hopf-Galois structure (HGS) on N/K consists of a Hopf algebra H over
K and a "nice” K-linear action of H on N (basic example: H = K[I]):

@ the action is compatible with the multiplication on N:
a - (xy) = mult (A(a) - (x®y)),

a-1=c¢(a)l forall a € K[G], x,y € N,

where A is the comultiplication and € the augmentation;

o (“Galois", i.e. non-degeneracy, condition): the following map is
bijective:

6:N®kH— EndkN, 6(x® h)(y)=x(h-y).

In particular, this means dimyx H = [N : K] and H acts faithfully on .
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The set-up: Classifying Hopf-Galois Structures

Greither and Pareigis (1987) showed the Hopf-Galois structures correspond
bijectively to subgroups G of the (large) group Perm(I") which are regular
(i.e. given x, y € T there is a unique g € G with g-x = y) and are
normalised by A(I), the left translations by I

Counting the Hopf-Galois structures then becomes a combinatorial
question in group theory, which we can approach in two ways:
(1) work directly in Perm(I);

(2) turn around the relation between I' and G (the “holomorph
approach™).
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Set-up: The holomorph approach

Hopf-Galois structures correspond to equivalence classes of regular
embeddings
I — Hol(G) C Perm(G),

where G is an abstract group with |G| = ||, and
Hol(G) = A(G) x Aut(G).

Two embeddings are deemed to be equivalent if they are conjugate by an
element of Aut(G).
The type of the HGS is (the isomorphism class of) G.

To count HGS using the holomorph approach, we need either
(i) a manageable classification of all groups G with |G| = |T|, or

(ii) a group-theoretic reason why only a few such G are relevant.
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Some Examples

(i) For I' = Cpr with p an odd prime, there are p 1 Hopf-Galois
structures, all with G = C,r [Kohl, 1998].
(i) For I = Cor with r > 3, there are 22 HGS for each of G = Cyr, Qor,
Dyr [B, 2007].
(iii) For I a nonabelian simple group, there are two HGS, both with
G =T [B, 2004]
(iv) Results are also known for all groups of order n where:
» n = pq, with p > g prime [B, 2004];
» n=2pg=p(p—1) where pand g = (p—1)/2 are odd primes (so p is
a safeprime) [Childs, 2003, 2012; Kohl 2013];

» n= pqr where p> g > r >2are primesand p, g=1 (mod r), p £ 1
(mod q) [Kohl, 2015].
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Problem 1: [ = C, with n squarefree

We consider cyclic extensions of degree n, where n is squarefree (with
arbitrary many prime factors).

Definition J

A C-group is a finite group, all of whose Sylow subgroups are cyclic.

Any group of squarefree order is a C-group.

It is a standard result that a C-group must be metacyclic. In principle, this
gives a classification of C-groups.

This was made explicit by Murty & Murty (1984).
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Theorem (Murty & Murty)
(i) Any C-group of order n (not necessarily squarefree) has the form
G(e,d, k) :={o,7 : 0*=1=71% 107" =0%}

where ed = n, gcd(e,d) =1 and k € Z has order d.
(i) G(e,d, k)= G(€,d', k") ifand only ife =€, d = d’, and (k) = (k')
(as subgroups of 7).

Corollary (Holder, 1895)

For n squarefree, the number of groups of order n (up to isomorphism) is

> (=)

ed=n qld

where the product is over primes q dividing d, and v(q, e) is the number
of primes p | e with p=1 (mod q).

v
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Our main result is:
Theorem (B+B)
On a cyclic field extension of squarefree degree n:
(i) The number of Hopf-Galois structures of type G = G(e, d, k) is

22 p(d),

where
e
ged(e, k — 1)’
and w(g) is the number of (distinct) prime factors of g.
In particular, Hopf-Galois structures of all possible types occur.

g:

(i) The total number of Hopf-Galois structures is

Y 2418 Z)H( v(a.g) _ >’

dgz=n qld

where 11 is the Mébius function: ji(z) = (—1)“) for z squarefree.

v

Nigel Byott (University of Exeter, UK ) Counting Problems Omaha, 27 May 2016 9 /25



Some properties of G:

Let G = G(e,d, k) ={o,7 : 06 =1=79 70771 = oK}
Set z = gcd(e, k — 1), so e = gz.
@ the centre of G is Z(G) = (08 ) = C,.
@ Hence n = de = dgz has 3 sorts of prime factors p:
> pis “active” if p | d;
> pis “passive” (acted upon)if p| g;
> pis “central” if p| z.

@ G has commutator subgroup [G, G] = (%) = (.

e We have the power formula (when 7 occurs to power 1)

j—1
(o°7Y = 0®5k) ) where S(k, ) = Z K
i=0
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Aut(G) and Hol(G)

Aut(G) = () x{¢s:s € L;} = Cg XL,
where
0(c) =0, 0(1)=0°T;
os(o) =0°, o¢s(1) =T
Note that all automorphisms preserve the exponent on 7.

We may write an element x € Hol(G) = G x Aut(G) as

x = [, A] = [077°, 0] with a € Ze, b € Zg,c € Zg,s € L,
where
a=oc°tP e G, A =0%s € Aut(G).
Multiplication in Hol(G) is given by
[a, N[, N] = [aX(), AN].
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In particular, even though the projection map
Hol(G) — G, X
is not a group homomorphism in general, the projection map
Hol(G) — (1) = Cy, x 7P
is a group homomorphism.
Now fix b =1, and consider
x = [077,0s] € Hol(G), with a € Ze, c € Zg, s € Z] .
Then we have the power formula

Xj — [O,;JS(sk,j)JrczkT(k,s,j)7_j7 0c5(s,j)¢si]7

where
j—1
T(k,S, O) = 07 T(k,s,_j) — 25(5, h)khil fOI’j Z 1.
h=0
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To count Hopf-Galois structures of type G = G(e, d, k) on our cyclic
extension, we determine the triples (a, c,s) € Ze x Zg x Z for which

x = [0%T,0¢s]
generates a regular cyclic subgroup of Hol(G), i.e.
x" = idHOl(G) and <X> . ldG =G.

Examining S(k,j), T(k,s,j) mod p for each prime p | e, and taking into
account the special cases s = 1 and sk = 1, we find this happens if and
only if

e for each prime p | z, we have s =1 (mod p) and p 1 a;

e for each prime p | g, we have either

» s=1 (mod p), ptc,or
» s=k=! (mod p), pt(a(s — 1) + cz).

So the number of suitable x is

[Tee—-1) | [ [T2p(p—1) | =2 gep(e).

plz plg
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Hence
# suitable x " |[Aut(Cp)|
# generators x per subgroup  |Aut(G)|
2E)gp(e)  o(n)
w(e) gp(e)
= 248)p(d).

# HGS of type G(e,d, k) =

To find the total number of HGS, we sum over isomorphism types of
G(e, d, k). For a given factorisation n = ed = gzd, we need the number of
subgroups (k) C ZJ of order d such that gcd(e, k — 1) = z.

The number of subgroups with z | gcd(e, k — 1) is

1
= H(qV(q,g) —-1).
wld) 23

Using Mobius inversion, we find the total number of HGS is

3 2@ u2) ] <qv(q,g) _ 1) .

dgz=n qld
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Problem 2: Arbitrary ' of squarefree order
This is work in progress: we have a strategy but not yet an answer!
Fix G = G(e,d, k) and G’ = G(e, , K) of squarefree order n.

Inside Hol(G), we try to count regular copies of G’. This will enable us to
count HGS of type G on a Galois extension with group ' = G.
As before, set

z=gcd(e, k — 1), e = gz;

and similarly
¢ =ged(e, k — 1), e =~C.

Useful Observation: [G’, G'] = C, is a semiregular subgroup of Hol(G)
contained in [Hol(G), Hol(G)], so it is in the kernel of the projection
homomorphism Hol(G) — (1) = C4. Hence it acts on (o) = C, so

v | e, or, equivalently d | §¢.

So some combinations of G and G’ give no HGS.
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Now G’ contains a cyclic subgroup Cs x C; of order §¢. This will have a
generator of the form

x = [071,0%s] € Hol(G),
(where 7 occurs to power 1). Look for a complementary generator
y =10%,0° 6]

(where 7 does not occur).
We need to count pairs (x,y), i.e. sextuples (a, c,s,a’, c’,s’), such that

o x = idyc);

o (x%) -id¢ has size 5¢/d.

® y7 = idye(c), and the orbits of (y) on (o) all have size ;

o xyx L=y~
Then (x,y) is a regular copy of G’, and every regular copy arises this way
(up to replacing x by another generator of the same cyclic subgroup of
ZY).
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It turns out that s = 1, but counting the quintuples (a,c,d’, ¢/, s') is
difficult since among the primes p | 7y there are various special cases
(depending on the choice of s'), e.g.

e s'=1 (mod p);

o s’ =k=! (mod p);

e s’ =k (mod p);

o s’ =k 1=k (mod p);

all with different restrictions on a, c, &', c’.
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Problem 3: Non-normal extensions of squarefree degree

Hopf-Galois structures on separable (but not necessarily normal)
extensions of squarefree degree n would correspond to transitive subgroups
H C Hol(G) with |G| = n. Here H need not have squarefree order.

When do
H1 g HOI(Gl), H2 g HOl(GQ)

give HGS on the same field extension? This occurs if H; = H, as degree n
permutation groups (not just as abstract groups).

These permutation groups are very special (e.g. they are soluble) but |
don't know how to describe them without reference to G.

So we don't even have the language to formulate an answer in general.
However, it ought to be possible to analyse completely certain special
cases, e.g.

@ n = pq, with p, g prime and p =1 (mod q);

e ged(n, p(n)) = 1.
[There should be at most one HGS; is the converse true?]
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Problem 4: T = C, for arbitrary n (not squarefree)

Here is a strategy by which it might be possible to count all HGS on a
cyclic extension L/K of arbitrary degree n.

We need to find regular cyclic subgroups C C Hol(G) where G is a group
of order n. In general, we cannot hope to classify all such G, but we might
be able to classify the relevant ones.
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Let J be a characteristic subgroup of G, i.e. J is stable under all
automorphisms of G. Then there is a canonical homomorphism
Hol(G) — Hol(G/J), via which C acts transitively on G/J.

Let D C C be the stabiliser of idG/J. We have D <1 C since C is abelian,
so D acts trivially on G/J. It follows that C/D acts regularly on G/J, and
D acts regularly J.

So we have HGS of types G/J, J on the cyclic extensions NP /K, N/NP.

Repeating the argument, we can break up G into characteristically simple
pieces, each arising as the type of a HGS on a cyclic extension.

Nigel Byott (University of Exeter, UK ) Counting Problems Omaha, 27 May 2016 20 / 25



These characteristically simple pieces must be soluble. (In fact, any HGS
on an abelian extension has soluble type.) Hence each piece is elementary
abelian of order p” for some prime p and some r > 1.

But a cyclic extension of degree p” can only have a HGS of elementary
abelian typeif r=1orif p=2, r=2.

So if a cyclic extension of degree n has a HGS of type G, then we have a
chain of subgroups

{id}:Go<G1<"'<lGr:G

in which each G; is characteristic in G and each quotient Gj;1/G; = G,
(for some prime p) or 3 x G.
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Definition
A finite group H is supersoluble it has a chain of subgroups

{id} =Ho<xHi<---<H =H

where each H; < H (not just H; <t Hj11!) and each H;;1/H; is cyclic
(WLOG of prime order).

We can rearrange these quotients into the “right order”:

Theorem (Zappa, 1941)

If H is supersoluble, there is a chain of subgroups as above such that each
|Hj+1/H;| is prime and

|Hjv1/Hj| > [Hjr2/Hjt1l.
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Suppose temporarily that 4 1 n.

If our cyclic extension of degree n has a HGS of type G, then G cannot
have a characteristically simple piece (5 x (3, so G is supersoluble.
Combining the quotients in Zappa's Theorem which correspond to the
same prime, we get a chain of subgroups

{id} =Go<G<Q---<G =G

in which Gj11/G;j is a pj-group, for primes pg > p1 > ... > pr—1.

Then the G; are characteristic in G, so each quotient Gj11/G; occurs as
the type of a HGS on a cyclic extension. Thus these quotients are cyclic.

This means that G is a C-group, and occurs in the classification of Murty
& Murty.

So we should be able to proceed as in the squarefree cyclic case (but with
more complicated congruence calculations) when 4 1 n.
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To handle the case 4 | n, we would need to consider “weakly supersoluble”
groups G with a chain of subgroups

{id}:H0<]H1<1"'<]Hr:H
such that each H; < H and each Hj11/H; = C, or G x G,.

However, in our case, each H; is characteristic in H (not just normal).

We would need to prove a version of Zappa's Theorem for these, and to
classify the (relevant) groups whose Sylow subgroups are either cyclic or
Dyr or Qor; these groups will either be C-groups, or will have a
characteristic C-subgroup of index 2 or 4.

Nigel Byott (University of Exeter, UK ) Counting Problems Omaha, 27 May 2016 24 / 25



Thank you!
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